US009274777B2

a2z United States Patent (10) Patent No.: US 9,274,777 B2

Tredoux et al. (45) Date of Patent: Mar. 1, 2016
(54) METHOD AND APPARATUS FOR (58) Field of Classification Search
UNIVERSAL CONTROL OF NETWORKED None
DEVICES See application file for complete search history.
(71) Applicant: Xerox Corporation, Norwalk, CT (US) (56) References Cited

U.S. PATENT DOCUMENTS
(72) Inventors: Gavan Leonard Tredoux, Penfield, NY

(US); Peter J. Zehler, Penfield, NY 7,543,298 Bl* 6/2009 Tangetal. 719/310
(US); Premkumar Rajendran, Webster, 2004/0167974 Al* 82004 Bunnetal. 709/223
NY (US) 2007/0239903 Al* 10/2007 Bhardwajetal. 710/8
2009/0150909 Al* 6/2009 Barreto etal. 719/324
2012/0303801 Al* 11/2012 Raschkeetal. 709/224
(73) Assignee: Xerox Corporation, Norwalk, CT (US) e
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this . .
patent is extended or adjusted under 35 P rimary Examn?er—H S Spugh
U.S.C. 154(b) by 0 days. Assistant Examiner — William C Wood
(21) Appl. No.: 14/272,138 7 ABSTRACT
A method, non-transitory computer readable medium, and
(22) Filed: May 7, 2014 apparatus for communicating a command to a networked

device that requires a driver via an endpoint device that does
not have the driver installed are disclosed. For example, the

(65) Prior Publication Data method establishes a first connection with virtual device

US 2015/0324180 Al Nov. 12, 2015 server, establishes a second connection with a universal

device driver API server, transmits a command to the univer-

(51) Int.CL sal device driver API server, receives a translated command

GO6F 3/00 (2006.01) compatible with the driver of the networked device from the

GOGF 9/44 (2006.01) virtual device server, wherein the translated command is

GOG6F 9/46 (2006.01) received by the.Virtual deyice server from the driver .that is

GO6F 13/00 (2006.01) called by the universal device driver API server, establishes a

GO6F 9/445 (200 6. o1) third connection with the networked device using identical

’ connection information associated with the second connec-

GOGF 13/10 (2006.01) tion with the virtual device server and transmits the translated

(52) US.CL command to the networked device over the third connection.
CPC ..o GO6F 8/61 (2013.01); GOGF 13/102

(2013.01) 20 Claims, 3 Drawing Sheets

2
202 START s

INITIATE A COMMAND FOR ANETWORKED DEVICE |\
3 20

ESTABLISH A CONNECTION TO A VIRTUAL DEVICE SERVER |\
206
INSTRUCT THE VIRTUAL DEVICE SERVER TO BIND ’\

TOAVIRTUAL P ADDRESS
3 208

ESTABLISH A CONNECTION TO A UNIVERSAL

DEVICE DRIVER API SERVER

3 210
TRANSMIT THE COMMAND TO THE UNIVERSAL
DEVICE DRIVER API SERVER
1 2
RECEIVE A TRANSLATED COMMAND COMPATIBLE }\

214

WITH THE DRIVER OF THE NETWORKED
DEVICE FROM THE VIRTUAL DEVICE DRIVER
v
TRANSMIT THE TRANSLATED COMMAND TO
THE NETWORKED DEVICE
¥ 2
RECIEVE ARESPONSE FROM I
THE NETWORKED DEVICE PN
¥ 218
SEND THE RESPONSE TO I
THE VIRTUAL DEVICE SERVER HS
i 20

RECEIVE A TRANSLATED RESPONSE FROM THE
UNIVERSAL DEVICE DRIVER APl SERVER

U.S. Patent Mar. 1, 2016 Sheet 1 of 3 US 9,274,777 B2

100
104 y
/
REMOTE
116 NETWORK
» REPOSITORY y
~ S 2
UNIVERSALDEVICE |
DRIVERAPI SERVER | > \,/D'FE{\T,,UCAEL
SERVER
DRIVER |«
A A
118
ENTERPRISE
U NETWORK
NETWORKED DEVICE
ENDPOINT | g
DEVICE | i NEC
108~ | | TAG
AN
110 \102 106

FIG. 1

U.S. Patent Mar. 1, 2016 Sheet 2 of 3 US 9,274,777 B2

200
200 START v

INITIATE A COMMAND FORANETWORKED DEVICE [~
¥ 204
ESTABLISH A CONNECTION TO AVIRTUAL DEVICE SERVER ~
7 206
INSTRUCT THE VIRTUAL DEVICE SERVER TO BIND
TO AVIRTUAL IP ADDRESS ™
7 208
ESTABLISH A CONNECTION TO A UNIVERSAL
DEVICE DRIVER API SERVER ™
7 210
> TRANSMIT THE COMMAND TO THE UNIVERSAL
g DEVICE DRIVER API SERVER ™
7 212
RECEIVE A TRANSLATED COMMAND COMPATIBLE
WITH THE DRIVER OF THE NETWORKED ~
DEVICE FROM THE VIRTUAL DEVICE DRIVER >4
v
TRANSMIT THE TRANSLATED COMMAND TO
THE NETWORKED DEVICE ™
» 216
§ RECIEVE ARESPONSE FROM
: THE NETWORKED DEVICE T
""""""""""""""""""" L
i SEND THE RESPONSE TO N
i THE VIRTUAL DEVICE SERVER N
""""""""""""""""""" O
| RECEIVE A TRANSLATED RESPONSE FROM THE
: UNIVERSAL DEVICE DRIVER APl SERVER T
--- 222
YES ADDITIONAL

COMMANDS? 224

FIG. 2

U.S. Patent

US 9,274,777 B2

Mar. 1, 2016 Sheet 3 of 3
300
305 v/ 306
\ [
] l
/O DEVICES, E.G.
MODULE STORAGE DEVICE
PROCESSOR MEMORY
| |
/ \
302 304

FIG. 3

US 9,274,777 B2

1
METHOD AND APPARATUS FOR
UNIVERSAL CONTROL OF NETWORKED
DEVICES

The present disclosure relates generally to control of net-
worked devices and, more particularly, to a method and appa-
ratus for universal control of networked devices without
requiring an on-premise server.

BACKGROUND

There is no widely standardized method for communicat-
ing with networked devices. Different manufacturers support
different standards, often specific to only the devices of the
manufacturer. Operating systems, such as Windows® for
example, allow the installation of vendor-supplied drivers,
which translate commands executed against the Windows®
application programming interface (API) into vendor-spe-
cific commands. The commands are sent “over the wire” to
the networked device in vendor-specific ways.

However, other operating systems may not have such driv-
ers. For example, operating systems of mobile devices cannot
typically use such drivers natively. While some vendors may
offer drivers for these platforms, there is a need for programs
running on operating systems of mobile devices to be able to
connect to and control these networked devices, which is
difficult with the current state of technology.

One could create a separate driver for every possible oper-
ating system, whether desktop or mobile. However, creating
drivers is a labor intensive and error prone process.

SUMMARY

According to aspects illustrated herein, there are provided
a method, a non-transitory computer readable medium, and
an apparatus for communicating a command to a networked
device that requires a driver via an endpoint device that does
not have the driver installed. One disclosed feature of the
embodiments is a method that establishes a first connection
with a virtual device server, establishes a second connection
with a universal device driver application programming inter-
face (API) server, transmits a command to the universal
device driver API server, receives a translated command com-
patible with the driver of the networked device from the
virtual device server, wherein the translated command is
received by the virtual device server from the driver that is
called by the universal device driver API server, establishes a
third connection with the networked device using identical
connection information associated with the first connection
with the virtual device server and transmits the translated
command to the networked device over the third connection.

Another disclosed feature of the embodiments is a non-
transitory computer-readable medium having stored thereon
a plurality of instructions, the plurality of instructions includ-
ing instructions which, when executed by a processor, cause
the processor to perform an operation that establishes a first
connection with a virtual device server, establishes a second
connection with a universal device driver application pro-
gramming interface (API) server, transmits a command to the
universal device driver API server, receives a translated com-
mand compatible with the driver of the networked device
from the virtual device server, wherein the translated com-
mand is received by the virtual device server from the driver
that is called by the universal device driver API server, estab-
lishes a third connection with the networked device using
identical connection information associated with the first

10

15

20

25

30

40

45

55

60

65

2

connection with the virtual device server and transmits the
translated command to the networked device over the third
connection.

Another disclosed feature of the embodiments is an appa-
ratus comprising a processor and a computer readable
medium storing a plurality of instructions which, when
executed by the processor, cause the processor to perform an
operation that establishes a first connection with a virtual
device server, establishes a second connection with a univer-
sal device driver application programming interface (API)
server, transmits a command to the universal device driver
API server, receives a translated command compatible with
the driver of the networked device from the virtual device
server, wherein the translated command is received by the
virtual device server from the driver that is called by the
universal device driver API server, establishes a third connec-
tion with the networked device using identical connection
information associated with the first connection with the vir-
tual device server and transmits the translated command to
the networked device over the third connection.

BRIEF DESCRIPTION OF THE DRAWINGS

Theteaching of the present disclosure can be readily under-
stood by considering the following detailed description in
conjunction with the accompanying drawings, in which:

FIG. 1 illustrates an example block diagram of a system of
the present disclosure;

FIG. 2 illustrates an example flowchart of one embodiment
of' a method for communicating a command to a networked
device that requires a driver via an endpoint device that does
not have the driver installed; and

FIG. 3 illustrates a high-level block diagram of a general-
purpose computer suitable foruse in performing the functions
described herein.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

DETAILED DESCRIPTION

The present disclosure broadly discloses a method and
non-transitory computer-readable medium for communicat-
ing a command to a networked device that requires a driver
via an endpoint device that does not have the driver installed.
As discussed above, there is no widely standardized method
for communicating with networked devices. Different manu-
facturers support different standards, often specific to only
the devices of the manufacturer.

However, some endpoint devices use operating systems
that may not have the drivers that are required, or needed, to
communicate commands to the networked devices that
require vendor specific drivers. For example, operating sys-
tems of mobile devices cannot typically use such drivers
natively. While some vendors may offer drivers for these
platforms, there is a need for programs running on operating
systems of endpoint devices (e.g., mobile endpoint devices)
to be able to connect to and control these networked devices,
which is difficult with the current state of technology.

One could create a separate driver for every possible oper-
ating system, whether desktop or mobile. However, creating
drivers is a labor intensive and error prone process.

One embodiment of the present disclosure addresses this
problem by providing a system and architecture that provides
universal control of networked devices that require vendor
specific drivers without requiring an on-premise server. For
example, mobile endpoint devices that use mobile operating

US 9,274,777 B2

3

systems may communicate and send commands to networked
devices that require vendor specific drivers (e.g., scanners,
printers, multi-function devices (MFDs), and the like). In one
embodiment, the mobile endpoint devices may issue com-
mands without any modification or alteration of the net-
worked device’s hardware or software, even though the
mobile endpoint device does not have the vendor specific
driver installed.

FIG. 1 illustrates an example system 100 of the present
disclosure. The system 100 may include an enterprise net-
work 102 and a remote network 104. In one embodiment, the
enterprise network 102 may be a local network of a company
or enterprise. In one embodiment, the remote network 104
may be a network in the “cloud” or accessible over the Inter-
net.

It should be noted that the enterprise network 102 and the
remote network 104 are simplified for ease of explanation.
The enterprise network 102 and the remote network 104 may
include additional access networks or network elements (e.g.,
firewalls, border elements, gateways, application servers, and
the like) that are not shown.

In one embodiment, the enterprise network 102 includes a
networked device 106 and an endpoint device 110. In one
embodiment, the networked device 106 may be any type of
device that is connected to the enterprise network 102 over a
wireless or wired connection. In one embodiment, the net-
worked device 106 may be a scanner, a printer, a multi-
function device (MFD), a copy machine, and the like.

In one embodiment, the endpoint device 110 may be any
type of endpoint device that is attempting to issue a command
to the networked device 106 to perform an action (e.g., scan,
copy, print, and the like). The endpoint device 110 may
include, for example, a mobile endpoint device (e.g., a smart-
phone, a cellular telephone, a laptop computer, tablet com-
puter, and the like), a desktop computer, and the like.

In one embodiment, the networked device 106 may require
avendor specific driver for a particular operating system (e.g.,
Windows®). However, the endpoint device 110 may be oper-
ating on a different operating system that cannot natively use
vendor specific drivers required by the networked device 106.
Inother words, a driver required for the networked device 106
may not be available for the operating system of the endpoint
device 110. As a result, the endpoint device 110 would be
incapable of communicating with or sending commands to
the networked device 106 with currently available technolo-
gies.

However, one embodiment of the present disclosure pro-
vides a system 100 that includes servers in the remote net-
work 104 that translate the desired command into a translated
command that is compatible with the vendor specific driver of
the networked device 106. In one embodiment, the remote
network 104 may include a universal device driver applica-
tion programming interface (API) server and a virtual device
server 112.

In one embodiment, the universal device driver API server
114 may store a plurality of different drivers for different
devices. The different drivers may also include different ver-
sions of the drivers depending on the operating system for the
devices. The universal device driver API server 114 may
communicate with the endpoint device 110 using a universal
command language (e.g., Xerox’s® extensible interface plat-
form (EIP)). The universal device driver API server 114 may
communicate with the endpoint device 110 via a universal
API installed and operating on the endpoint device 110.

In one embodiment, the universal device driver API server
114 may also be in communication with a repository 116. The
repository 116 may store responses or data received from the

15

20

30

40

45

4

networked device 106. The endpoint device 110 may then
pull the data from the repository 116 via the universal device
driver API server 114, as discussed below.

In one embodiment, the virtual device server 112 may act
as a virtual device representing the networked device 106. As
aresult, when a driver 118 on the universal device driver API
server 114 issues a command, the virtual device server 112
appears to the driver 118 as the networked device 106. For
example, if the networked device 106 is a networked scanner,
the virtual device server 112 may be a virtual scanner server
that appears to the driver 118 as the networked scanner. In
addition, the driver 118 does not know or is not aware that it
is not actually communicating with the networked device
106.

Although, the universal device driver API server 114, the
repository 116 and the virtual device server 112 are illustrated
in FIG. 1 as being separate devices, it should be noted that the
universal device driver API server 114, the repository 116 and
the virtual device server 112 may be deployed as a single
server in the remote network 104. It should be also noted that
any number of universal device driver API servers 114,
repositories 116 and virtual device servers 112 may be
deployed in one or more different remote networks 104.

In one embodiment, the endpoint device 110 may initiate a
connection with the networked device 106. For example, the
endpoint device 110 may scan a near field communication
(NFC) tag 108 using a “tap to print” or a “tap to scan” feature
of the networked device 106. In another embodiment, the
endpoint device 110 may simply attempt to connect to the
networked device 106 over the enterprise network 102 using
a wired or a wireless connection.

When the endpoint device 110 connects to the networked
device 106, the endpoint device 110 may display a universal
API to the user. The universal API may be a graphical user
interface that includes commands that are associated with the
networked device 106. For example, if the networked device
106 is a MFD, the universal API may include commands such
as scan, copy, print, save, and the like.

As noted above, the vendor specific drivers required by the
networked device 106 may not be installed on the endpoint
device 110. As aresult, the endpoint device 110 may not send
or transmit the desired commands directly to the networked
device 106. However, the system 100 allows the endpoint
device 110 to send the desired command to the universal
device driver API server 114 over a virtual IP address and
receive a translated command that is compatible with the
driver of the networked device 106 from the virtual device
server 112.

For example, after the endpoint device 110 connects with
networked device 106, the endpoint device 110 may initiate a
connection to the virtual device server 112. In one embodi-
ment, the endpoint device 110 may communicate with the
virtual device server 112 in any communication protocol that
does not alter or change the translated command that is even-
tually received from the virtual device server 112, as dis-
cussed below. Examples of communication protocols that
may be used include an extensible messaging and presence
protocol (XMPP), transported using secure hypertext transfer
protocol (HTTPS), and the like.

In one embodiment, the virtual device server 112 may be
capable of binding to a plurality of different virtual IP
addresses reserved for the virtual device server 112. The
endpoint device 110 may instruct the virtual device server 112
to bind to an available virtual IP address. The endpoint device
110 may receive the virtual IP address and map the virtual IP
address to the actual IP address of the networked device 106.

US 9,274,777 B2

5

Concurrently, the endpoint device 110 may initiate a con-
nection with the universal device driver API server 114. In
one embodiment, the universal device driver API server 114
and the endpoint device 110 may communicate via the uni-
versal API operating on the endpoint device 110 using a
universal command language. One example of the universal
command language includes the EIP protocol of Xerox®
Corporation.

In one embodiment, the endpoint device 110 may send the
desired command and the virtual IP address bound to the
virtual device server 112 to the universal device driver API
server 114. Based on the command and the operating system
associated with the command, the universal device API server
114 may call the corresponding driver 118. The universal
device driver API server 114 may then translate the command
received from the endpoint device 110 in the universal com-
mand language into a translated command compatible with
the driver 118.

In one embodiment, the driver 118 may then issue the
translated command to the virtual device server 112 over the
virtual IP address. The virtual device server 112 may then
forward the translated command to the endpoint device 110.
After the endpoint device 110 receives the translated com-
mand from the virtual device server 112, the endpoint device
may transmit the translated command to the networked
device 106 such that the networked device 106 can execute
the desired command.

In one embodiment, the networked device 106 may operate
using a dynamic port assignment for a second return connec-
tion to the networked device 106. In one embodiment, the
endpoint device 110 may be programmed to review the trans-
lated command from the virtual device server 112 to obtain
the dynamic port assignment. The endpoint device 110 may
then connect to the appropriate port to establish a return
connection and transmit the translated command to the net-
worked device 106.

In one embodiment, the endpoint device 110 may receive a
response from the networked device 106. For example, the
response may be scan data if the networked device 106 is a
scanner. However, since the endpoint device 110 does not
have the vendor specific drivers, the endpoint device 110 may
not be able to understand the response.

The endpoint device 110 may send the response to the
virtual device server 112. The virtual device server 112 may
then send the response to driver 118 called by the universal
device driver API server 114. The universal device driver API
server 114 may then translate the response into the universal
command language such that the endpoint device 110 may be
able to understand, read or display the response.

In one embodiment, the response (e.g., scan data) may be
stored in the repository 116. The endpoint device 110 may
then pull the translated response from the repository 116 via
the universal device driver API server 114. In another
embodiment, the translated response may simply be passed
through directly to the endpoint device 110 via the universal
device driver API server 114 without storing the response in
the repository 116.

Thus, the system 100 provides universal control of net-
worked devices with any endpoint device. Notably, the end-
point device 110 does not need to install any vendor specific
drivers for any specific operating system. In addition, the
networked device 106 is not modified or altered in any way. In
other words, the software or the hardware of the networked
device 106 does not need to be reconfigured to be compatible
with the endpoint device 110 that does not have the vendor
specific drivers installed.

10

15

20

25

30

35

40

45

50

55

60

65

6

Rather, the system 100 allows the endpoint device 110 to
send commands to the universal device driver API server 114
to have the commands translated and passed back to the
endpoint device 110 from the virtual device server 112 so that
the translated commands can be transmitted to the networked
device 106. As a result, the networked device 106 behaves as
if the networked device 106 were communicating with an
endpoint device 110 that has installed the proper driver or
drivers.

In addition, the universal device driver API server 114 and
the virtual device server 112 are located in the “cloud” or a
remote network 104 that can be accessed via the Internet. As
a result, the enterprise does not need to expend capital or
resources to deploy or maintain an on-premise server.

FIG. 2 illustrates a flowchart of a method 200 for commu-
nicating a command to a networked device that requires a
driver via an endpoint device that does not have the driver
installed. In one embodiment, one or more steps or operations
of the method 200 may be performed by the endpoint 110 or
a general-purpose computer as illustrated in FIG. 3 and dis-
cussed below.

At step 202 the method 200 begins. At step 204, the method
200 initiates a command for a networked device. For
example, a user may want to use his or her mobile endpoint
device to initiate a scan of a document on a networked scan-
ner. The mobile endpoint device and the networked scanner
may be located at an enterprise network. The mobile endpoint
device may initiate a connection to the networked device by
scanning an NFC tag using a “tap to scan” feature of the
networked scanner. In another embodiment, the endpoint
device may simply attempt to connect to the networked
device scanner over an enterprise network using a wired or a
wireless connection.

The mobile endpoint device may then display a universal
API to the user that allows the user to initiate a command for
the networked device. The mobile endpoint device may
receive the command via the universal API.

At step 206, the method 200 establishes a connection to a
virtual device server. Using the above example, the mobile
endpoint device may communicate with the virtual device
server to initiate the first connection, or the virtual scanner
server if the networked device is a networked scanner, using
any communication protocol that does not alter or change the
translated commands that are eventually received from the
virtual device server. Examples of communication protocols
that may be used include an extensible messaging and pres-
ence protocol (XMPP), transported over secure hypertext
transfer protocol (HTTPS), and the like.

In one embodiment, the virtual device server may be
located in a remote network that is located in the “cloud”
remote from the enterprise network. For example, the remote
network may be accessed over the Internet.

At step 208, the method 200 instructs the virtual device
server to bind to a virtual IP address. For example, the virtual
device server may be capable of binding to a plurality of
different virtual IP addresses reserved for the virtual device
server. The endpoint device may instruct the virtual device
server to bind to an available virtual IP address. The endpoint
device may receive the virtual IP address and map the virtual
IP address to the actual IP address of the networked device.

At step 210, the method 200 establishes a connection to a
universal device driver API server. For example, the endpoint
device may concurrently initiate a second connection with the
universal device driver API server. In one embodiment, the
universal device driver API server may also be located in the
remote network similar to the virtual device server.

US 9,274,777 B2

7

In one embodiment, the universal device driver API server
and the endpoint device may communicate via the universal
API operating on the endpoint device using a universal com-
mand language. One example of the universal command lan-
guage includes the EIP protocol of Xerox® Corporation.

At step 212, the method 200 transmits the command to the
universal device driver API server. Notably, the command
received on the mobile endpoint device does not initially go to
the networked device that the mobile endpoint device con-
nected to in step 204. Referring back to the above example,
the mobile endpoint device may send the desired command or
a scan command for the networked scanner to the universal
device driver API server using the universal command lan-
guage. In one embodiment, the endpoint device may also send
the virtual IP address bound to the virtual device server with
the command.

At step 214, the method receives a translated command
compatible with the driver of the networked device from the
virtual device server. In one embodiment, based on the com-
mand and the operating system associated with the command,
the universal device driver API server may call the corre-
sponding driver a plurality of different drivers that are stored
at the universal device driver API. The universal device driver
APl server may then translate the command received from the
endpoint device in the universal command language into a
translated command compatible with the driver.

In one embodiment, the driver may then issue the translated
command to the virtual device server over the virtual IP
address. The virtual device server may then forward the trans-
lated command to the endpoint device.

At step 216, the method 200 transmits the translated com-
mand to the networked device. For example, the mobile end-
point device may obtain the IP address of the networked
device based upon the mapping to the virtual IP address. The
mobile endpoint device may then transmit the translated scan
command to the networked scanner over the IP address of the
networked scanner over the enterprise network 102.

At optional step 218, the method 200 receives a response.
For example, the networked scanner may send the response
(e.g., scan data or data of a scanned document) back to the
mobile endpoint device. However, since the mobile endpoint
device does not have the vendor specific driver installed, the
mobile endpoint device may not understand the response
from the networked scanner.

At optional step 220, the method 200 sends the response to
the virtual device server. The mobile endpoint device may
send the response or the scan data from the networked scanner
to the virtual device server. The virtual device server may then
forward the response or the scan data to the universal device
driver API server. The universal device driver API server may
then translate the response or the scan data into the universal
command language such that the mobile endpoint device can
understand, read or display the translated response or the
translated scan data. In one embodiment, the response or the
scan data may be stored in a repository.

At optional step 222, the method 200 receives a translated
response from the universal device driver API server. For
example, the mobile endpoint device may pull the translated
response from the repository via the universal device driver
API server or the response may be passed to the endpoint
device directly via the universal device driver API server.

At step 224, the method 200 determines if any additional
commands are received. If additional commands are
received, the method 200 may return to step 212 to transmit
the command to the universal device driver API server. If no
additional commands are received, the method 200 may pro-
ceed to step 226. At step 226, the method 200 ends.

10

15

20

25

30

35

40

45

50

55

60

65

8

It should be noted that although not explicitly specified,
one or more steps, functions, or operations of the method 200
described above may include a storing, displaying and/or
outputting step as required for a particular application. In
other words, any data, records, fields, and/or intermediate
results discussed in the methods can be stored, displayed,
and/or outputted to another device as required for a particular
application. Furthermore, steps, functions, or operations in
FIG. 2 that recite a determining operation, or involve a deci-
sion, do not necessarily require that both branches of the
determining operation be practiced. In other words, one ofthe
branches of the determining operation can be deemed as an
optional step. In addition, it should be noted that FIG. 2 in
some embodiments may be performed using any combination
of'the steps (e.g., using fewer than all of the steps) illustrated
in FIG. 2 or in an order that varies from the order of the steps
illustrated in FIG. 2.

FIG. 3 depicts a high-level block diagram of a general-
purpose computer suitable foruse in performing the functions
described herein. As depicted in FIG. 3, the system 300 com-
prises one or more hardware processor elements 302 (e.g., a
central processing unit (CPU), a microprocessor, or a multi-
core processor), a memory 304, e.g., random access memory
(RAM) and/or read only memory (ROM), a module 305 for
communicating a command to a networked device that
requires a driver via an endpoint device that does not have the
driver installed, and various input/output devices 306 (e.g.,
storage devices, including but not limited to, a tape drive, a
floppy drive, a hard disk drive or a compact disk drive, a
receiver, a transmitter, a speaker, a display, a speech synthe-
sizer, an output port, an input port and a user input device
(such as a keyboard, a keypad, a mouse, a microphone and the
like)). Although only one processor element is shown, it
should be noted that the general-purpose computer may
employ a plurality of processor elements. Furthermore,
although only one general-purpose computer is shown in the
figure, if the method(s) as discussed above is implemented in
a distributed or parallel manner for a particular illustrative
example, i.e., the steps of the above method(s) or the entire
method(s) are implemented across multiple or parallel gen-
eral-purpose computers, then the general-purpose computer
of this figure is intended to represent each of those multiple
general-purpose computers. Furthermore, one or more hard-
ware processors can be utilized in supporting a virtualized or
shared computing environment. The virtualized computing
environment may support one or more virtual machines rep-
resenting computers, servers, or other computing devices. In
such virtualized virtual machines, hardware components
such as hardware processors and computer-readable storage
devices may be virtualized or logically represented.

It should be noted that the present disclosure can be imple-
mented in software and/or in a combination of software and
hardware, e.g., using application specific integrated circuits
(ASIC), a programmable logic array (PLA), including a field-
programmable gate array (FPGA), or a state machine
deployed on a hardware device, a general purpose computer
or any other hardware equivalents, e.g., computer readable
instructions pertaining to the method(s) discussed above can
be used to configure a hardware processor to perform the
steps, functions and/or operations of the above disclosed
methods. In one embodiment, instructions and data for the
present module or process 305 for communicating a com-
mand to a networked device that requires a driver via an
endpoint device that does not have the driver installed (e.g., a
software program comprising computer-executable instruc-
tions) can be loaded into memory 304 and executed by hard-
ware processor element 302 to implement the steps, functions

US 9,274,777 B2

9

or operations as discussed above in connection with the
exemplary method 200. Furthermore, when a hardware pro-
cessor executes instructions to perform “operations”, this
could include the hardware processor performing the opera-
tions directly and/or facilitating, directing, or cooperating
with another hardware device or component (e.g., a co-pro-
cessor and the like) to perform the operations.

The processor executing the computer readable or software
instructions relating to the above described method(s) can be
perceived as a programmed processor or a specialized pro-
cessor. As such, the present module 305 for communicating a
command to a networked device that requires a driver via an
endpoint device that does not have the driver installed (in-
cluding associated data structures) of the present disclosure
can be stored on a tangible or physical (broadly non-transi-
tory) computer-readable storage device or medium, e.g.,
volatile memory, non-volatile memory, ROM memory, RAM
memory, magnetic or optical drive, device or diskette and the
like. More specifically, the computer-readable storage device
may comprise any physical devices that provide the ability to
store information such as data and/or instructions to be
accessed by a processor or a computing device such as a
computer or an application server.

It will be appreciated that variants of the above-disclosed
and other features and functions, or alternatives thereof, may
be combined into many other different systems or applica-
tions. Various presently unforeseen or unanticipated alterna-
tives, modifications, variations, or improvements therein may
be subsequently made by those skilled in the art which are
also intended to be encompassed by the following claims.

What is claimed is:

1. A method for communicating a command to a networked
device that requires a driver via an endpoint device that does
not have the driver installed, comprising:

establishing, by a processor of the endpoint device that

does not have the driver installed to directly communi-
cate with the networked device, a first connection with a
virtual device server;

establishing, by the processor, a second connection with a

universal device driver application programming inter-
face (API) server, wherein the universal device driver
API stores a plurality of drivers to translate a command
generated by the endpoint device using the driver
selected from the plurality of drivers;

transmitting, by the processor, the command to the univer-

sal device driver API server;
receiving, by the processor, a translated command compat-
ible with the driver of the networked device from the
virtual device server, wherein the translated command is
received by the virtual device server from the driver that
is called by the universal device driver API server;

establishing, by the processor, a third connection with the
networked device using identical connection informa-
tion associated with the first connection with the virtual
device server; and

transmitting, by the processor, the translated command to

the networked device over the third connection.

2. The method of claim 1, further comprising:

receiving, by the processor, a response from the networked

device that the networked device has executed the trans-
lated command;

sending, by the processor, the response to the virtual device

server; and

receiving, by the processor, a translated response using a

universal command language from the universal device
driver API server.

10

15

20

25

30

40

45

50

55

10

3. The method of claim 1, further comprising:

instructing, by the processor, the virtual device server to

bind to a virtual internet protocol (IP) address.

4. The method of claim 3, further comprising:

mapping, by the processor, the virtual IP address to an IP

address of the networked device; and

sending, by the processor, the virtual IP address to the

universal device driver API server with the command.

5. The method of claim 1, wherein the command is sent to
the universal device driver API server using a universal com-
mand language.

6. The method of claim 5, wherein the universal command
language comprises an extensible interface platform (EIP).

7. The method of claim 1, wherein the identical connection
information comprises a port that is used to connect the driver
to the virtual device server.

8. The method of claim 1, wherein the universal device
driver API server and the virtual device server are located in
anetwork that is remote from an enterprise network where the
endpoint device and the networked device are located.

9. The method of claim 1, wherein the universal device
driver API server selects the driver from the plurality of dif-
ferent drivers stored at the universal device driver API server
based upon the command and an operating system of the
networked device.

10. A non-transitory computer-readable medium storing a
plurality of instructions which, when executed by a processor
of'an endpoint device that does not have a driver installed to
directly communicate with a networked device, cause the
processor to perform operations for communicating a com-
mand to a networked device, the operations comprising:

establishing a first connection with a virtual device server;

establishing a second connection with a universal device
driver application programming interface (API) server,
wherein the universal device driver API stores a plurality
of drivers to translate a command generated by the end-
point device using the driver selected from the plurality
of drivers;
transmitting the command to the universal device driver
API server;

receiving a translated command compatible with the driver
of the networked device from the virtual device server,
wherein the translated command is received by the vir-
tual device server from the driver that is called by the
universal device driver API server;
establishing a third connection with the networked device
using identical connection information associated with
the first connection with the virtual device server; and

transmitting the translated command to the networked
device over the third connection.

11. The non-transitory computer-readable medium of
claim 10, further comprising:

receiving a response from the networked device that the

networked device has executed the translated command;
sending the response to the virtual device server; and
receiving a translated response using a universal command

language from the universal device driver API server.

12. The non-transitory computer-readable medium of
claim 10, further comprising:

instructing the virtual device server to bind to a virtual

Internet protocol (IP) address.

13. The non-transitory computer-readable medium of
claim 12, further comprising:

mapping the virtual IP address to an IP address of the

networked device; and

sending the virtual IP address to the universal device driver

API server with the command.

US 9,274,777 B2

11

14. The non-transitory computer-readable medium of
claim 10, wherein the command is sent to the universal device
driver API server using a universal command language.

15. The non-transitory computer-readable medium of
claim 14, wherein the universal command language com-
prises an extensible interface platform (EIP).

16. The non-transitory computer-readable medium of
claim 10, wherein the identical connection information com-
prises a port that is used to connect the driver to the virtual
device server.

17. The non-transitory computer-readable medium of
claim 10, wherein the universal device driver API server and
the virtual device server are located in a network that is
remote from an enterprise network where the endpoint device
and the networked device are located.

18. The non-transitory computer-readable medium of
claim 10, wherein the universal device driver API server
selects the driver from the plurality of different drivers stored
at the universal device driver API server based upon the
command and an operating system of the networked device.

19. A method for communicating a command to a net-
worked scanner that requires a driver via a mobile endpoint
device that does not have the driver installed, comprising:

displaying, by a processor of the mobile endpoint device

that does not have the driver installed to directly com-
municate with the networked scanner, a universal appli-
cation programming interface (API) on the mobile end-
point device;

receiving, by the processor, a scan command via the uni-

versal API,

establishing, by the processor, a connection with a virtual

device server in a network remotely located from a local
enterprise network in response to a driver on the univer-
sal device driver API server connecting to the virtual
device server in response to the command transmitted by
the mobile endpoint device;

10

15

20

25

30

12

instructing, by the processor, the virtual scanner to bind to
a virtual internet protocol (IP) address;

mapping, by the processor, the virtual IP address to an IP
address of the networked scanner;

establishing, by the processor, a connection to a universal
device driver API server located in the network remotely
located from the local enterprise network, wherein the
universal device driver API stores a plurality of drivers to
translate a command generated by the mobile endpoint
device using the driver selected from the plurality of
drivers;

transmitting, by the processor, the scan command and the
virtual IP address to the universal device driver API
server using a universal command language;

receiving, by the processor, a translated scan command
compatible with the driver of the networked scanner
from the virtual device server using a communication
protocol that does not alter the translated scan command,
wherein the virtual device server received the translated
scan command from a driver stored at the universal
device driver API server over the virtual IP address; and

transmitting, by the processor, the translated scan com-
mand to the networked scanner via the IP address of the
networked scanner.

20. The method of claim 19, further comprising:

receiving, by the processor, a scan data from the networked
scanner;

sending, by the processor, the scan data to the virtual scan-
ner server; and

receiving, by the processor, a translated scan data using the
universal command language from the universal device
driver API server, wherein the universal device driver
API server translates the scan data into the translated
scan data.

